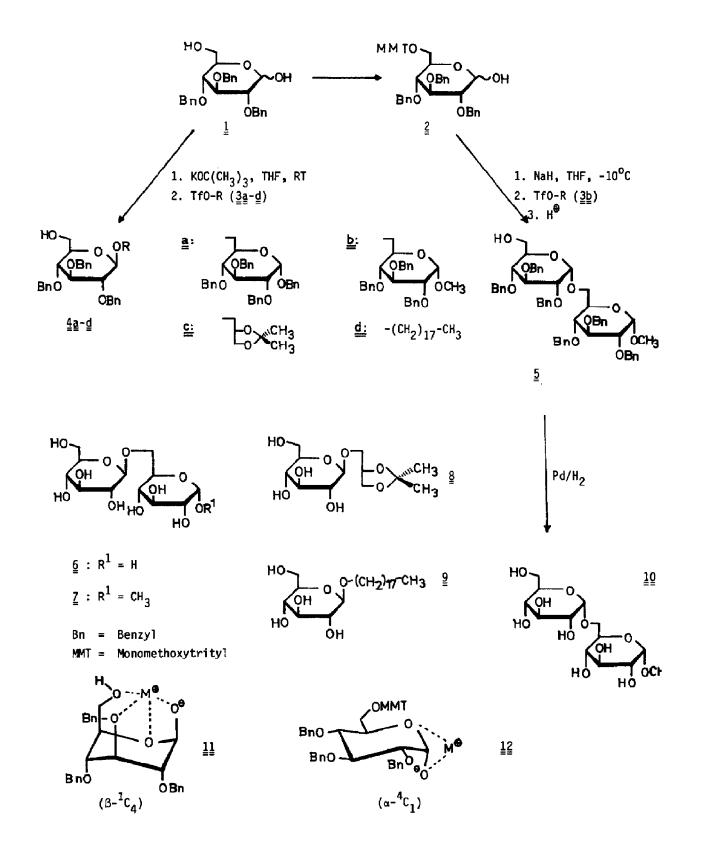
Tetrahedron Letters Vol. 21, pp 3565 - 3568 ©Pergamon Press Ltd. 1980. Printed in Great Britain

SYNTHESIS OF α - AND B-GLYCOPYRANOSIDES via 1-0-ALKYLATION

R.R. Schmidt⁺, U. Moering²⁾, and M. Reichrath³⁾ Fakultät für Chemie, Universität Konstanz, Postfach 5560 D-7750 Konstanz, Germany


Abstract: 1-0-Alkylation of partly protected glucopyranose <u>1</u> and galactopyranose <u>13</u> led to a convenient, short term synthesis of B-glycosides and B-disaccharides <u>4a</u>-<u>d</u> and <u>14</u>. Glucopyranose <u>2</u> with a bulky protective group at 0-6 yielded exclusively the a-anome. (isomaltoside derivative) <u>5</u>.

Our efforts to synthesize glycosides and disaccharides without the use of halogenoses and heav, metal salt catalysis resulted in directed syntheses of α - or, alternatively, β -glycosides and -disaccharides of D-ribofuranose and D-mannofuranose via 1-O-alkylation ²⁻⁵⁾. Alkylating agent were primary triflates of carbohydrates and of polyhydroxy compounds. We report here on the de velopment of similar methods for the synthesis of α - or β -glycopyranosides. This directed synthesis of β -glycopyranosides was especially successful with partially protected carbohydrate derivatives. With simple alkylating agents preferential formation of α - or β -anomers was alrea observed under different conditions ^{6,7}.

Previous studies of solvent, temperature and base variation with 2.3.4.6-tetra-O-protected glu copyranose did show ^{2,3}) that there are good chances for highly B-selective alkylation with 6-unprotected glucopyranose at room temperature or at higher temperatures. Accordingly 2.3.4-tri O-benzyl glucose $\underline{1}$ was deprotonated with equimolar amounts of potassium tertiary butoxide in T at room temperature. Addition of the triflates $\underline{3a} - \underline{d}^{2,3}$ resulted exclusively in the formation of B-disaccharides $\underline{4a}, \underline{b}$ and the B-glycosides $\underline{4c}, \underline{d}$ in good yields (Table 1) thus demonstrating the efficiency and conveniency of this B-glucopyranoside synthesis. Alkylation at 0-6 or at 0-was not observed due to the higher acidity of OH-1. Hydrogenolysis produced gentiobiose ($\underline{6}$), methyl- α -gentiobioside ($\underline{7}$) and the glucopyranosides $\underline{8}$ and $\underline{9}$, which were synthesized already by a different method 8,9).

Temperature dependent investigations indicated, that α -glucosidation is favored by low tempera tures and also by bulky protective groups at 0-6^{2,10}. Therefore $\underline{1}$ was monomethoxytritylated to $\underline{2}$ and treated with sodium hydride in THF at -10⁰C. Addition of triflate $\underline{3}\underline{b}$ and subsequent r

3565

moval of the monomethoxytrityl group led exclusively to isomaltoside derivative $\underline{5}$; hydrogenolys produced methyl-isomaltoside $\underline{10}^{11}$.

The observed higher reactivity of axial hydroxylic groups in alkylation reactions ¹²) demonstra es that the α -selectivity is due to α -anion $\underline{12}$ being in its ${}^{4}C_{1}$ -conformation ¹³). However, the corresponding ${}^{4}C_{1}$ -conformer of the β -anion is present in an equilibrium of about 1:1 with $\underline{12}$ at room temperature 2,10 . Therefore the β -selectivity of the anion of $\underline{1}$ with no protective group at 0-6, observed at room temperature or at higher temperatures, is interpreted by partial formation of the more reactive β -anion $\underline{11}$ in its ${}^{1}C_{4}$ -conformation. Intramolecular complexation of the metal ion certainly contributes to the conformational stabilization. This explanation is also in accordance with observations made for the directed syntheses of α - or β -glycofuranoside via 1-0-alkylation 4,5 .

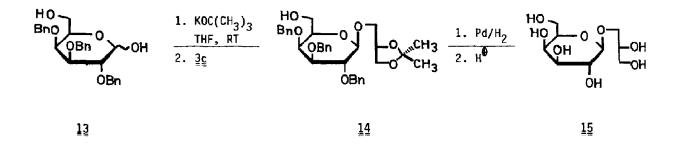

	Yield [%]	[a] ²⁰ 578
<u>4a</u>	54	26.5 ⁰ (c=1.0, CHC1 ₃)
4 ⊵	51	9.4 ⁰ (c=1.0, CHC1 ₃)
<u>4</u> ⊆	79	15.1 ⁰ (c=1.03, CHCl ₃)
<u>4</u> ₫	43	2.4 ⁰ (c=1.0, CHC1 ₃)
5	80	59.0 ⁰ (c=1.0, CHC1 ₃); Lit. ^{b)} : 62.9 ⁰ (c=1.0, CHC1 ₃)
<u>6</u>	87	14.0° (c=1.0, H_2^0 after 4 h); Lit. ^{c)} : 10.0° (c=3.0, H_2^0).
Ţ	97	63.5 ⁰ (c≈1.0, H ₂ 0)
₿	63	$-10.0^{\circ d}$ (c=0.85; CHCl ₃); Lit. d,e -10.5° (c=0.51, CHCl ₃).
<u>9</u>	64	-19.7° (c=0.81, CH ₃ OH); Lit. ^{f)} : -21.8°.
<u>10</u>	84	50 ⁰ (c=1.0, H ₂ O); Lit. ^{g)} : 50 ⁰ C (c=5.8, H ₂ O)
<u>14</u>	80	-14.8° (c=0.9, CHC7 ₃)
15	84	- 3.5° (c=1.45, H ₂ 0); Lit. ^h): -7° (c=2.0, H ₂ 0).

Table: Yields and optical rotations ^{a)}

a) All new compounds gave correct elemental analyses. b) R. Eby and C. Schuerch, Carbohydr.Res. 50, 203 (1976). c) V. Stefanovic, Chem.Ber. <u>94</u>, 2359 (1961). d) Comparison with 2.3-O-Isopropylidene-D-glyceryl 2.3.4.6-tetra-O-acetyl-β-D-glucopyranoside. e) see ref. 8; f) see ref. 9; g) M.L. Wolfram, L.W. Georges, and I.L. Miller, J.Am.Chem.Soc. <u>71</u>, 125 (1949) h) see ref. 15.

Analogous β -selectivity was observed with 2.3.4-tri-O-benzyl galactose $\frac{13}{12}$ ¹⁴⁾. From -30^oC to

room temperature β -galacto-pyranoside $\underline{14}$ was obtained exclusively with $\underline{3c}$ as alkylating agent. The easier formation of the β - ${}^{1}C_{4}$ conformer with galactopyranose may be responsible for this ex tended β -selectivity. For structural analysis purposes $\underline{14}$ was completely deprotected to yield $\underline{1}$. which was synthesized already independently 15 .

References and Footnotes

- 0-Alkylation at the anomeric center, part 3. Part 2 see preceding communication. -- This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.
- 2) U. Moering, Diplomarbeit, Universität Konstanz, 1980.
- 3) M. Reichrath, Thesis, Universität Konstanz, 1979.
- 4) R.R. Schmidt and M. Reichrath, Angew.Chem. <u>91</u>, 497 (1979); Angew.Chem.Int.Ed.Engl. <u>18</u>, 466 (1979); and references cited therein.
- 5) R.R. Schmidt, M. Reichnath, and U. Moering, accompanying paper.
- 6) W. Roth and W. Pigman, J.Am.Chem.Soc. 82, 4608 (1960); D.M. Hall and O.A. Stamm, Carbohydr. Res. 12, 421 (1970); A. Zamojski and H. Bazymska, Rocz.Chem. <u>49</u>, 2113 (1975)
- 7) A.H. Haines, Adv.Carbohydr.Chem.Biochem. 33,55-56 (1976).
- 8) T. Ogawa, K. Katano, and M. Matsui. Carbohydr.Res. 70, 37 (1979).
- 9) R. Hori and Y. Kegami, Yakugaku Zasski, <u>79</u>, 80 (1959).
- P.E. Pfeffer, G.G. Moore, P.D. Hoagland, and E.S. Rothman in Synthetic Methods for Carbohydrates, ed. H.S. Elkhadem, ACS Symposium Series 39, American Chemical Society, Washington D.C., 1976, p. 155-178.
- 11) Similar investigations with $\underline{3\underline{c}}$ indicated that the stereochemical result is dependent on the alkylating agent used 2).
- 12) See ref. 7, p. 57-58.
- 13) The metal ion may be intramolecularly complexed to 0-1, 0-5, and 0-6 according to model considerations.
- 14) 13 was obtained according to a procedure by R. Gigg and C.D. Warren, J.Chem.Soc. 1965, 2205
- 15) B. Wickberg, Acta Chem.Scand. 12, 1187 (1958).

(Received in Germany 11 June 1980)